some new results on the hosoya polynomial of graph operations
Authors
abstract
the wiener index is a graph invariant that has found extensive application in chemistry. inaddition to that a generating function, which was called the wiener polynomial, who’sderivate is a q-analog of the wiener index was defined. in an article, sagan, yeh and zhang in[the wiener polynomial of a graph, int. j. quantun chem., 60 (1996), 959969] attainedwhat graph operations do to the wiener polynomial. by considering all the results that saganet al. admitted for wiener polynomial on graph operations for each two connected andnontrivial graphs, in this article we focus on deriving wiener polynomial of graph operations,join, cartesian product, composition, disjunction and symmetric difference on n graphs andwiener indices of them.
similar resources
Some New Results On the Hosoya Polynomial of Graph Operations
The Wiener index is a graph invariant that has found extensive application in chemistry. In addition to that a generating function, which was called the Wiener polynomial, who’s derivate is a q-analog of the Wiener index was defined. In an article, Sagan, Yeh and Zhang in [The Wiener Polynomial of a graph, Int. J. Quantun Chem., 60 (1996), 959969] attained what graph operations do to the Wiene...
full textOn the Roots of Hosoya Polynomial of a Graph
Let G = (V, E) be a simple graph. Hosoya polynomial of G is d(u,v) H(G, x) = {u,v}V(G)x , where, d(u ,v) denotes the distance between vertices u and v. As is the case with other graph polynomials, such as chromatic, independence and domination polynomial, it is natural to study the roots of Hosoya polynomial of a graph. In this paper we study the roots of Hosoya polynomials of some specific g...
full texton the roots of hosoya polynomial of a graph
let g = (v, e) be a simple graph. hosoya polynomial of g isd(u,v)h(g, x) = {u,v}v(g)x , where, d(u ,v) denotes the distance between vertices uand v. as is the case with other graph polynomials, such as chromatic, independence anddomination polynomial, it is natural to study the roots of hosoya polynomial of a graph. inthis paper we study the roots of hosoya polynomials of some specific graphs.
full textextensions of some polynomial inequalities to the polar derivative
توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی
15 صفحه اولOn Powers of Some Graph Operations
Let $G*H$ be the product $*$ of $G$ and $H$. In this paper we determine the rth power of the graph $G*H$ in terms of $G^r, H^r$ and $G^r*H^r$, when $*$ is the join, Cartesian, symmetric difference, disjunctive, composition, skew and corona product. Then we solve the equation $(G*H)^r=G^r*H^r$. We also compute the Wiener index and Wiener polarity index of the skew product.
full textSpectra of Some New Graph Operations and Some New Class of Integral Graphs
In this paper, we define duplication corona, duplication neighborhood corona and duplication edge corona of two graphs. We compute their adjacency spectrum, Laplacian spectrum and signless Laplacian. As an application, our results enable us to construct infinitely many pairs of cospectral graphs and also integral graphs.
full textMy Resources
Save resource for easier access later
Journal title:
iranian journal of mathematical chemistryPublisher: university of kashan
ISSN 2228-6489
volume 1
issue Issue 2 (Special Issue Dedicated to the Pioneering Role of Ivan Gutman In Mathematical Chemistry) 2010
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023